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The random wave equation

Let us consider the scalar wave equation:
1 _ 1 1
Ap— ———0;p=F th ==(1+V .
P CZ(Z,X) t P wi CZ(Z,X) Cg( + (Z7 X))

Here, V is a stationary mean-zero random field with slowly decaying
correlations :

E[V(z+sx+y)V(s.9)] ~ 5 R(x),  He(01).



lllustrations : Random fluctuations




Experimental results

Data collected in real environments report that propagation media with
long-range correlations can be encountered in different contexts such as:

e Geophysics
S. Dolan, C. Bean, and B. Riollet, The broad-band fractal nature of heterogeneity in the
upper crust from petrophysical logs, Geophys. J. Int.,132 (1998).

o Laser beam propagation through the atmosphere
C. Sidi and F. Dalaudier, Turbulence in the stratified atmosphere: Recent theoretical
developments and experimental results, Adv. in Space Res., 10 (1990).

e Medical Imaging
M. Feld et al., Tissue Self-Affinity and Polarized Light Scattering in the Born
Approximation: A New Model for Precancer Detection, Phys. Rev. Lett., 97 (2006).



Mathematical Results

Wave propagation in random media with slowly decaying correlations

One dimensional propagation medium

e R. Marty and K. Sglna, Acoustic waves in long-range random media, SIAM J. Appl.
Math, (2009).

e J. Garnier and K. Sglna, Pulse propagation in random media with long-range
correlation SIAM Multiscale Model. Simul., (2009).

General propagation medium under the paraxial approximation

e G. Bal, T. Komorowski, L. Ryzhik, Asymptotics of the phase of the solutions of
the random Schrédinger equation, Arch. Rat. Mech. Anal., (2011)

e C. Gomez, Wave decoherence for the random Schrédingier equation with long-range
correlations, Commun. Math. Phys., (2013)

e Y. Gu, L. Ryzhik, The random Schrédinger equation: slowly decorrelating
time-dependent potentials, Commun. Math. Sci., (2017)



Mathematical Results

Justification of the paraxial approximation and white-noise approximation from
the random wave equation with rapidly decaying correlations:

o F. BaiIIy, J. F. Clouet, and J. P. Fouque, Parabolic and Gaussian white noise
approximation for wave propagation in random media, SIAM J. Appl. Math., 56 (1996).

e J. Garnier and K. Sglna, Coupled paraxial wave equations in random media in the
white-noise regime, Ann. Appl. Probab., 19 (2009).



The paraxial approximation :
The paraxial approximation
Rapidly decaying correlations,
Slowly decaying correlations,
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The paraxial approximation : the homogeneous case



The paraxial approximation : the homogeneous case

Let us consider first the nonrandom scalar wave equation:
1 2 . t
Ap— —50;p=F with F(t,z,x) = f(—
Co )\0

where
e )\ is the central wavelength of the source,
e rp is the transverse width of the source.
We consider
e a high frequency regime, that is \¢ < 1,
e a Rayleigh length of order 1, that is rg /Ao ~ 1.

Now, introducing

1 .
p(w,x,z) = o / e p(Aot, rox, z)dt,

we have the following Helmholtz equation

k2

(85 + %Ax + j)b = f(w,x)d'(2), with
o Ao



The paraxial approximation : the homogeneous case

Let us write the wave field as

b(w7 x7 Z) = ¢(w7 z? X)e"kZ/)\()?

so that for z # 0 '
2o+ 2Ko.6+ Las=o,
)\0 I’O

and
Ao

WAX(b == 0.

A .

iaﬁqw 020 +

N——
<1

paraxial wave equation

Therefore, in the high frequency regime A\¢ — 0, with g ~ Mo, we have

p(Mot + L/co, rox, L) — %/ef"“’te"AxL/(zk)F(w,x)dw.



The paraxial approximation : the random case



The paraxial approximation : the random case
We consider the following wave speed profile

1 1 X
- (1+ov(E 2 )
cz(z,x) g ( to (/ IC)
and our Helmholtz equation becomes

(32+ Aerl)\(z (1+0V(i,%>))ﬁ: f(w,x)8'(2), with

Writing again the wave field as

b(w7 X7 z) = ¢(w? z? X)eikZ/AD7
we now have for z # 0
2 ko Z rox -
aZ‘H 0:6 + 2kr, ZA o+ 2A0V(/c’ I )¢_0'
<1

random paraxial wave equation

k = UJ/Co.



The paraxial approximation : the random case

Considering only the paraxial wave equation

Z X _

and forgetting for a moment about the Laplacian, we only have the following
differential equation
Z X
Z¢_12)\0 (/C’ Ie )#:

with solution o
i3%e 2/l v(u, 10X du
¢(z,%) = € 2% o 1% 5(0, x).

How to characterize the asymptotic behavior of the process

(z, (:r\i: /Z/ICV(U,”;)—x>du ?
0 e




The paraxial approximation : the random case

ol z/le rox
(z,x) — o /s V(u., i )du

The scaling regime we consider is the following:
e \o = c? <« 1 (high frequency regime),
e ro = ¢ (Rayleigh length of order one),
e |. = ¢ (Strong lateral interaction between the wave and the medium),
o g=¢".

We are therefore interested in the limiting behavior as € — 0 of the process

z/e
B*(z,x) = 6571/ V(u,x)du.
0



Rapidly decaying correlations



Rapidly decaying correlations

Central limit theorem. Let (X,)n be a sequence of mean zero iid random
variables such that v? = E[|X1|*] < co. Then,

N
NN X; = N, v3).
j=1
Here, N1/2 is the good scaling for the CLT since

N
var(Nfl/2 ZXI) =N"1 Z var(X;) = v*.
j=1



Rapidly decaying correlations

In our context, we have

E[B"(z,x+ y)B(z,y)] = 2 / E[V (0, x + y)V(u/, y)dudu’
2s—3
o Z/o R(u,x)du .
| —
< oo

Therefore, the choice s = 3/2 leads to a nontrivial stochastic limit.

Approximation diffusion. Assuming mixing properties for the process
z— V(z,-), we have

z/e
B*(z,x) = 51/2/ V(u,x)du = B(z,x),
0 e—0

where B is a Brownian field with covariance function

E[B(z,x+y)B(s,y)] =z A s/C>o R(u,x)du

0

See J.P. Fouque, J. Garnier, G. Papanicolaou, K. Sglna '07 for advance topics on
approximation diffusion for ODEs with random coefficients.



Rapidly decaying correlations

Going back to our toy equation, under these mixing assumptions, the solution

to
00 = 52V (£.x) 0

converges in distribution in C([0, c0), L>(R?)):

ikp
2

'$(0,%).

. z/e
(bs(Z,X) — 61%51/2 fo V(u,x)du¢(07x) :>0 ¢0(Z, X) — e
e—
Using the Itd’s formula, this limiting process satisfies
.k
deo(z,x) = l§¢0(Z,X)OdB(Z, x),

with
E[dB(z,x)dB(s,y)] = 6(z — s)/0 R(u,x — y)du.



Rapidly decaying correlations

Considering a subdivision 0 = sp < 51 < --- < s, = z, a Brownian motion B,
and suitable assumptions on X:

The Itd integral
z n—1
/ X(s)dB(s) ~ ZX(S])(B(S]+1) — B(sj)), (Stieltjes sum)
0 =
The Stratonovich integral
n—1
| X0 de(s) = 5 XX (5(s,0) — ).
j=0

We also have

df (B(2)) = f'(B(z)) o dB(z).



Rapidly decaying correlations

For our toy equation

doo(z,x) = ig¢0(27 x)odB(z,x),

we have the relation

/d)osxostx) /d)osde(sx
with -
C(O):/ R(u,0)du
0
Therefore, denoting (2, x) = E[¢o(z,x)], one has

2
du(zx) = Oz x)e,
so that ,

p(L,x) = e ¥ COLB400,x).

/d)sx



Rapidly decaying correlations

Under the paraxial scaling, the wave equation is

e LA e

Ap— —
P 2

Theorem : J. Garnier and K. Sglna '09

Assuming the process z — V/(z,) is ¢-mixing, we have
plet + L ex 1) = [ € dnfw, L x)dl,
e—

in L2(R3) N C°(R, L*(R?)), where ¢ is the unique solution of the
It6-Schrédinger equation

idgpo(z,x) + iAxcﬁo(z, x) + g%(z, x)odB(z,x) =0,
with ¢o(0,x) = f(w,x)/2 and

E[dB(z,x)dB(s,y)] = d(z — s) /000 R(u,x — y)du.

See D.A. Dawson - G. Papanicolaou '84 for the well posedness of this SPDE.



Rapidly decaying correlations

As for the toy equation, denoting u(z,x) = E[¢o(z,x)], one has

2
idu(z, x)+ L Ax,u(z x) — k fg(o)u(z7 x)dz =0,
which can be explicitly solved :

(L, %) = e—kzC(O)L/8eiAxL/(2k);f(w7 x)/2.

e Study of higher order moments, spot dancing regime, scintillation.
e Application to imaging/inverse problem in random media.

(G. Bal, L. Borcea, J. Garnier, G. Papanicolaou, O. Pinaud, K. Sglna, C.
Tsogka...)



Slowly decaying correlations



Slowly decaying correlations

In the previous It6-Schrédinger equation we had

E[dB(z,x + y)dB(s,y)] = 6(z — 5) /OO R(u,x)du.

0

<oo

e With the long-range correlations assumption we have
c
EV(z+sx)V(sy)] ~ —<R(x—y), $e(©1),
zZ—0o0 Z

and the above covariance function is not defined anymore.
e The "CLT scaling" o = £%/? is no longer the correct one.

e What is the good scaling? that is the value for s, and what would be the
nature of the stochastic integral, that is the multiplicative noise?



Slowly decaying correlations

Let us start by considering again the toy equation

Oy e = igss_ZV(g,x)q&E,

with solution . ,
. s—1 rz/e
¢E(z7 X) — ¢iz° Jo V(U,x)du¢(07x).

We have

z/e rz/e
E[B*(z,x +y)B%(z,y)] = £2*7V / / E[V (u,x + y)V(u )| dudu’

~ g2 1)/ / — |77 du’ duR(x)

~E 2(s— 2+.V'JC ZZHR( )
with H=1—-/2 € (1/2,1), and so that

s:2—g€(3/2,2).

(e° < &%?)



Slowly decaying correlations

Let © be a continuous odd function and Hx(x) = (—1)Ke"2/2;(—7(e”‘2/2 the
K-th Hermite polynomial. For X ~ A/(0,1)

inf(K >1: E[©(X)Hk(X)] #0)
is called the Hermite rank of ©.

Noncentral limit theorem Let V' a stationary Gaussian process satisfying

EV(z+s)V(s)] ~ =,  v€(0,1/K).

z—00 27V’

We have for s =2 — K /2
. z/e
s / O(V(u))du = Ch Bu(2),
0 e—

in C(0,00), where By stands for the K-th Hermite process with Hurst index
H=1-+K/2 € (1/2,1) : it has stationary increments and

E[B(t)Br(s)] = %(\tle + s — |t —s*").

If K =1, By is a Gaussian process, and if K > 2 By is non-Gaussian.
See M. Taqqu '79, and R. Marty & K. Sglna '11, for application on wave propagation.



Slowly decaying correlations

We want to apply this previous theory to our toy equation
koo
Oz = ize 2V(E,X)¢s
2 €

Let © be a continuous odd function (K = 1), and V a stationary Gaussian field
such that

Bz +s,x YV Y]~ SR, € (01)

Setting V/(z,x) = ©(V(z,x)), we have

k:l[‘/g

¢E(Zax) =e¢'2°

uxdu

#(0, x):qﬁo(z x)=¢e B"’” #(0,x),
in C([0, 00), L>(R?)), where By stands for a fractional Brownian field with

Hurst index H € (1/2,1).
Question : Can we define a stochastic integral for which

doo(z,x) = I do(z,0)dBu(z,x) 7

and how to manage this integral, leading with the fractional noise, together
with the paraxial approximation.



Slowly decaying correlations

The definition of the stochastic integral follows the definition of Zdhle '98.
Introducing the Weyl's derivative for a € (0,1) and z € (0, L) :

N 1 f(2) “f(z) = f(u)
Dg-f(2) ._m[ P . mdu]

o _ (=) 1 f(2) Ff(2) — f(u)
R el (e TRy A e e

the generalized Stieljes integral of f € C¥(0, L) with respect to g € C*(0, L),
with v+ p >1, v > «, and u > 1 — « is defined by

/0 fdg := (71)0‘/0 Dg.-f(u)D}~*g, - (u)du,
with g, - (u) := g(u) — g(L™), and

z L
/ fdg := / f1(0,2)dg.
0 0

Under proper conditions, we have

dF(g(t)) = F'(g(t))dg(t).



Slowly decaying correlations

For our purpose one can extend this integral to more general class of function

L
|| | < clflanae)

with

I£lla= sup () +/j%du)

and
M(8) = i ayra o 0P 1P ()]

O<u<t<L

Using the Garsia-Rademich-Rumsey inequality, this integral is well defined for g
being a fractional Brownian motion.



Slowly decaying correlations

Under the paraxial scaling, the wave equation is

O () L I

where V is a non-Gaussian random stationary field defined by

V(z,x) = / e®*V(z,dp),  with  V(z,dp) = m(dp)O(V(z,p))

e mis a random measure with bounded total variation and
E[m(dp)m(da)] = 6(p — aq)M(dp)dpdq

e V is a Gaussian field satisfying

EV(z+5p)V(s,q)] ~ ——R(p,a), € (0,1).

z—+4o00 z9

e O is a odd bounded continuous function (K = 1).



Slowly decaying correlations
We have the following result

Theorem : C.G and O. Pinaud '17
We have in L2(R3) N C°(R, L*(R?))

p(et + L/co,ex,L) = /e_"“”cz)o(w, L,x)dw,
where ¢g is the unique pathwise solution of the /t8-Schrédinger equation
idgo(z,x) + ;—kAxcﬁo(z,x) + gcﬁo(z,x)dBH(z7 x) =0,
with ¢o(0,x) = f(w,x)/2. Here By is non-Gaussian:

Bu(z,x) = /ei"'xéH(z, dp), with Bu(z, dp) = m(dp) Bu(z,p)
—
Gaussian field
and c
EBH(t,x)Bu(s )] = 2 (1t + |sP" [t — sP*)R(x — ),
or

ir(t—s)
E[dBu(t,x)dBH(s,y)] Cﬁ /| dr R(x —y).



Slowly decaying correlations

From the It6-Schrédinger equation we cannot make computations as for
the standard Brownian motion case!

Removing the Laplacian term, we have

k
o(w, L,x) =281 k= w/q,
and then . Br(L.x)
H(L, X
p(€t+ L/CO,&‘X7 L) 3 Ef(t — T,X).

If By is Gaussian, we have

ik _ 2,2H
E[elzBH(L,x)] —e Cy kL /8.

Nevertheless, the proof of the above theorem gives us explicit (but
complicated) formulas for all the moments of ¢o.



Slowly decaying correlations

To study the (paraxial) wave propagation for 2 — /2 < s < 3/2, we can make
use of the Wigner transform:

We(z,x,k) = (;)d /eik-y¢8 (27"—6“%,5)@@.

We have lim. W.(z,x,k) = W(z,x,k) and depending on s

Wl(z7x,k) = W/dqwg()(’q)exp (ik.cH_,‘/Bz(dp)elp»X(eflq-P/Z_elq<P/2))_

0. Ws = —(0)(—Ax)"* W,

with W, = E[Wl]
e For s =3/2

0:Ws + k- VxWs = / dpK (k,p)(Ws(z,x, p) — Wa(z,x,K)).

C. Gomez, Wave decoherence for the random Schrédingier equation with long-range
correlations, Commun. Math. Phys., (2013)



|deas for the proof



Ideas for the proof

From the Helmholtz equation

D)) S U T

going into the Fourier domain in x, one has

K? &2|k)? K? ~(Z
2 A ~ APN n o
azP(Z»’i)JFET(l* 12 )P(Za'i)JFEeriﬁ/z/V(gde)P(Zvﬁ*”)*o

o If 1 —2|k|>/k® > 0, & is referred as a propagating mode.

o If 1 —2|k|>/k® < 0, K is referred as an evanescent mode.



Ideas for the proof

The main steps of the proof are :
e the contribution of the evanescent modes are negligible,

e for the propagating modes, considering the decomposition

M S ikz/e? € —ikz/e?
Plw,x,z) = a°(w,z,x) e 4 b (w,z,x) e /e%
——— N—_———
forward scattering backward scattering
we have
b* = 0
e—0

e and finally,

a®(w, L, x) = do(w, L, x) in distribution.
e—



Ideas for the proof

To understand the proof of the last point, let us consider one last time our toy

equation
ik z
S (E)¢f’

that we rewrite as

6-(2) = 6(0) + 2’f V(o)

=05 () o [ e TTV(Y)

Considering the first order moment, one has

) [fane [ sl [Tv(*)]

E[¢e(2)] = ¢(0)




Ideas for the proof

Using the strategy of M.S Taqqu '77, one can show that

lﬂ’oaz / du - /* dunE[ﬁV(%)]
S [ [ T e
0 0

F (a,B)EF

z n—1 lru
= Cg/ dUl---/ Un ||m ]E H/ H71/2 (dr):|,
0 0 Irl

A,H("i)

with
A eirz
Ba,u(2) :/ ir|r]FA= 1/2 w(dr),
A
and where w is a mean zero Gaussian random measure such that

E[w(dr)w(ds)] = é(r + s)drds.



Ideas for the proof

As a result, one has

$(0) Y (ikCs/2)" / duy - /"7 dunE[ﬁBA,H(UJ)]

Elge( Z)] =
L Eoato
A—oco

where ¢4 satisfies
6a(2) = 6(0) + 2 [ oa(0)Bln(u)d
0
kCsy (7
=0(0)+ %52 [ a(u)dBan()




Ideas for the proof

Remembering that

A e _ 1
BA7H(U) = A drmw(dr)

and that Ba,n — Bu (fractional Brownian motion with Hurst index H), one
can show that

éa — ¢ in probability in C"7°(0,L), VO e (0,H—1/2),

where ¢ is the unique pathwise solution to

oz) = 0(0) + 72 [ o(u)dBu(w).



Conclusion

e The paraxial and white-noise approximation (It6-Schrddinger equation) is
still valid for random medium with slowly decaying correlations, but the
nature of the stochastic term is more complex.

e From the moment technique of the proof, one can compute moments of
all order, but the formula is complex.

o The It6-Schrédinger equation has been applied in imaging and inverse
problems. Can we handle these imaging techniques in presence of random
medium with slowly decaying correlations? knowing that martingale
properties are not available.

Thank you!



